
Discrimination-Free Pricing with Bayesian
Variational Inference

Lydia J. Gabric
Joint work with Kenneth Q. Zhou and Shuang Zhou

Arizona State University
lgabric@asu.edu

Actuarial Research Conference
July 31, 2023

Lydia Gabric (ASU) DF Pricing with Variational Inference July 31, 2023 1 / 29



Agenda

1 Introduction

2 Lindholm et al. (2022a) Method

3 The Bayesian Method

4 Numerical Example

5 Conclusion

Lydia Gabric (ASU) DF Pricing with Variational Inference July 31, 2023 2 / 29



Agenda

1 Introduction

2 Lindholm et al. (2022a) Method

3 The Bayesian Method

4 Numerical Example

5 Conclusion

Lydia Gabric (ASU) DF Pricing with Variational Inference July 31, 2023 3 / 29



Discrimination in the late 19th century
An excerpt from Hoffman (1900, pg. 137):

Direct discrimination as race directly affects benefits and premiums.
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Discrimination at Wisconsin in 1938

• Resident Security Map of
Milwaukee County, WI

• Redlining denoted areas
in which banks and
lenders would deny
mortgage loans

• Also found within the
insurance industry
(Ansfield, 2021)

Indirect Discrimination from
using geographic location as a
proxy for race

United States. Federal Home Loan Bank Board. Division of
Research and Statistics (1938)
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Where is the industry now?

As of 2012, thirteen states had general statutes banning any kind of
“unfair discrimination” within life, health, disability, auto, and
property/casualty insurance.

• Although, these general prohibitions do not mention any
specific characteristics (Avraham et al., 2014).

In 2011, the European Union Court of Justice banned gender-based
discrimination in insurance.
• However, the Guidelines on the Application of the Gender

Directive allowed the use of true risk factors that may be
correlated with gender (European Commission, 2012).
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Existing Research
• Review of discrimination in insurance:

• Frees and Huang (2021) – Discriminating actuary
• Dolman et al. (2021) – Multidisciplinary collaboration

• Unisex mortality models:
• Chen and Vigna (2017) – Unisex mortality model
• Chen et al. (2018) – Solvency requirement

• Fairness and discrimination:
• Grari et al. (2022) – Fair pricing via adversarial learning
• Charpentier (2022) – Quantifying fairness and discrimination
• Lindholm et al. (2023) – Demographic disparities
• Xin and Huang (2023) – Antidiscrimination Insurance Pricing

• Discrimination-Free Pricing:
• Lindholm et al. (2022a) – Frequentist inference
• Andrés et al. (2022) – Casual inference
• Lindholm et al. (2022b) – Multi-task network
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Background and Terminology

• Discrimination: “the act of treating different groups differently”
(Frees & Huang, 2021)

• “A pricing model avoids direct discrimination, if none of the
discriminatory features (characteristics) is used as a rating
factor” (Lindholm et al., 2022a)

• “A pricing model avoids indirect discrimination, if it avoids direct
discrimination and, furthermore, the nondiscriminatory
features are used in a way that does not allow implicit inference
of discriminatory features from them” (Lindholm et al., 2022a)

• “Unfair discrimination exists if, after allowing for practical
limitations, price differentials fail to reflect equitably the
difference in expected losses and expenses” (National
Association of Insurance Commissioners (NAIC), 2010)
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Background and Terminology
A general definition of discrimination given by Frees and Huang
(2021):

“The act of treating different groups differently”

A further categorization of the definitions of discrimination:

Justifiable Unjustifiable

Direct Age Race

Indirect ??? ZIP Code*

* Use ZIP Code to infer the relationship with race and use it in
pricing.
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Our objectives

Provide a cohesive Bayesian pricing framework that produces
discrimination-free and asymptotically unbiased prices without the
knowledge of policyholder’s discriminatory information

• Reconstruct the discrimination-free pricing expressions of
Lindholm et al. (2022a) from a Bayesian perspective

• Define Bayesian mixture models that treat the discriminatory
covariates as latent variables without using individual level
discriminatory information

• Implement Bayesian Variational Inference to obtain the
approximate posterior distribution that achieves
discrimination-free price estimates
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A Review of Lindholm et al. (2022a)
Let D and X be two vectors of the discriminatory and non-discriminatory
covariates of a policyholder, respectively, and Y be the claim amount of
the policyholder.

Best-Estimate:
µ(X,D) := E[Y |X,D] (1)

Unawareness:
µ(X) := E[Y |X] =

∫
d
µ(X,d)dP(d|X) (2)

Biased Discrimination-Free:

h(X) :=
∫

d
µ(X,d)dP(d) (3)

Unbiased Discrimination-Free:

h∗(X) :=
∫

d
µ(X,d)dP∗(d) (4)
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Bayesian pricing: Directly using observed Di

Let Θ be a vector of the unknown model parameters, and suppose
that

Yi | Xi ,Di ,Θ ∼ f (yi ;xi ,di ,θ), i = 1, . . . ,n, (5)
Θ ∼ πΘ(θ),

where
• f (yi ;xi ,di ,θ) denotes the likelihood function of Yi for given

values of xi ,di ,θ, and
• π(θ) is the prior distribution of the unknown model

parameters Θ.

Goal: Obtain the posterior distribution of Θ, πΘ(θ|Y ,X,D), for
Bayesian inference.

Lydia Gabric (ASU) DF Pricing with Variational Inference July 31, 2023 14 / 29



Bayesian pricing: Directly using observed Di

The Bayesian best-estimate is

µB(Xi ,Di) = E[Yi |Xi ,Di ] =

∫
yi · g(yi |Xi ,Di) · dyi (6)

where
g(yi |Xi ,Di) =

∫
θ

f (yi |Xi ,Di ,θ) · πΘ(θ) · dθ

Inference Methods Frequentist Bayesian

Best-Estimate µ(Xi ,Di) µB(Xi ,Di)

Unawareness µ(Xi) µB(Xi)

Discrimination-Free h(Xi) hB(Xi)

Unbiased Discrimination-Free h∗(Xi) h∗
B(Xi)

Table: Reconstruction of Lindholm et al. (2022a) under Bayesian inference
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Bayesian pricing: Indirectly using latent Di

Assume that the discriminatory covariates Di are not observed.
Let Θ be a vector of the unknown model parameters, and suppose

Yi | Xi , Di ,Θ ∼ f (yi ;xi ,di ,θ),

Di
iid∼ πDi (di) , Θ ∼ πΘ(θ), i = 1, . . . ,n,

where
• f (yi ;xi ,di ,θ) denotes the likelihood function of Yi ,
• πDi (di) is the prior distribution for the latent discriminatory

variables, and
• πΘ(θ) is the prior distribution for the unknown model

parameters.

Goal: Obtain the posterior distribution of D and Θ, π(d,θ|Y ,X), for
Bayesian inference.
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Bayesian Inference
To obtain the posterior distribution of D and Θ:

a. Markov chain Monte Carlo (MCMC): sequential sampling established
by a selected simulation algorithm (Gelman et al., 2013).

• When a parameter is updated, it is conditioned on the most
recent value of the rest of the parameters.

• While conditional sampling D|Y ,X,Θ, we are able to infer D with
the observed data {Y ,X} and the most recent values of Θ which
results in indirect discrimination.

b. Variational Inference (VI): approximate posterior distribution
through optimization (Blei et al., 2017).

• Consider a family of distributions, Q, of the unknown variables,
z = {D,Θ}, and select the member from the family that
minimizes the KL divergence to the true posterior distribution:

q∗(z) = argmin
q∈Q

KL(q(z)||p(z|w)),

where w = {Y ,X} contains all of the observed variables.
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Bayesian Price Estimates

Justifiable
(Discrimination-Free)

Unjustifiable
(Discriminatory)

Direct
(Observed D) hB(X) and h∗

B(X) µB(X,D) and µB(X)

Indirect
(Latent D) Variational Inference MCMC Sampling

Remarks:
• The unawareness, biased, and unbiased discrimination-free

price are all functions of the best estimate prices.
• The MCMC method implicitly infers the discriminatory

information D through conditional sampling.
• Variational inference with mean-field approximation assumes

independence between all unknown variables.
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Data and Data Simulation
Considered the swmotorcycle dataset from the CASdatasets R
package (Dutang & Charpentier, 2020). We selected the following
fields:
• Y : claim count
• X : risk class = {Low ,Medium,High}
• D: gender = {Male,Female}

Data simulation procedure:
1 General cleaning and obtained 20,000 observations
2 Fit a Poisson glm with log link to obtain true model coefficients

lnY = β0 + β11{X=Medium} + β21{X=High} + β31{D=Female}

3 Simulated a claim count realization for each observation with
the true model coefficients
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Direct use of gender
Bayesian reconstruction of framework established by Lindholm
et al. (2022a) using observed gender.
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Indirect use of gender
Bayesian model that assumes gender is a latent variable.
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Figure: Bayesian estimates of the claim rate for the high risk class
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Overview
We proposed a Bayesian pricing model that does not require the
use of individual-level discriminatory data and provides a direct
estimation process to obtain asymptotically unbiased
discrimination-free prices.

• We reconstructed the discrimination-free pricing framework
proposed by Lindholm et al. (2022a) from a Bayesian
perspective

• Through the use of Bayesian mixture models and latent
variables, our model does not require discriminatory
information on the individual level.

• Using Bayesian variational inference with a mean-field
approximation, we ensure discrimination-free via the assumed
independence between discriminatory variables and model
parameters.
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Questions? Comments?


